Zusammenfassung

Wildtiere können mittels drohnenbasierten Luftbildern und künstlicher Intelligenz detektiert, verortet und gezählt werden.

Für Anwendungsfelder wie Populationserfassung, Rehkitzrettung und Wildschadensprävention in Ökologie, Jagd, Forst- und Landwirtschaft wurde in dieser Studie in Zusammenarbeit mit der Stiftung Wildtiere des Kantons Aargau untersucht, inwiefern sich verschiedene Methoden der automatisierten Luftbildanalyse anhand von UAV-Daten zur Wildtierdetektion eignen. Im Frühjahr 2018 wurden dazu 27 Befliegungen mit Fixed-Wing-UAVs und Multikoptern über sieben Wildgehegen in der Nordwestschweiz und dem Südschwarzwald durchgeführt. Dabei kamen verschiedene Infrarotkameras wie multispektrale Nahinfrarot-Sensoren (NIR) und thermografische Verfahren (Wärmebildsensorik) zum Einsatz.

Die fernerkundliche Luftbildauswertung zeigte, dass sich insbesondere Wärmebilddaten aus einer Flughöhe unterhalb von 100m AGL für eine Automatisierung durch Objekterkennungsalgorithmen eignen. Hierzu wurde ein Deep-Learning-Modell (COCO pretrained Inception-Class Faster R-CNN) als modernes Verfahren der künstlichen Intelligenz mit Tensorflow und Python implementiert. Im Trainingsprozess wurden aus ca. 8000 manuell markierten Tiersignaturen Eigenschaftsmerkmale extrahiert.

Für einige Tierarten (Damwild, Rotwild, Wisent, Ziegenartige) konnten in der anschließenden Anwendung (Inferencing) selbst in naturnahen Mischwald-Umgebungen extrem robuste Detektionsergebnisse erreicht werden. Die effiziente, aufgabenspezifische Implementierung des Prototyps erlaubt eine Echtzeitanalyse von Live-Video-Feeds unter Feldbedingungen. Mit einer Detektionsrate von 92,8% pro Tier, bzw. 88,6% mit zusätzlicher Spezies-Klassifikation, konnte so gezeigt werden, dass die neue Technologie ein enormes Innovationspotential für die Zukunft des Wildtier-Monitorings aufweist.